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We review the problems associated with resolution correction and discuss some of the most promising
procedures to solve them. We select four methods to deconvolute heavy particle backscattering spectra:~i!
parametrization of the theoretical function,~ii ! using histograms with variable bin width,~iii ! modified Land-
weber iterations, and~iv! using mollifiers. To judge the quality of the methods, we treat simulated backscatter-
ing spectra as obtained in Rutherford backscattering measurements with solid-state detectors. Our results are as
follows: Whena priori information on the shape of the spectra is available, parametrization of the problem is
superior to all other methods. When information on high-frequency components of the spectrum~e.g., on sharp
edges! is of primary interest, the use of histograms with variable-bin width might provide good results. In all
other cases, the choice of the best procedure depends on the specific problem and our ability to optimize the
adjustable parameter of the specific method.@S1063-651X~96!11010-2#

PACS number~s!: 02.50.2r

I. INTRODUCTION

A basic problem in counting experiments is this: when
signals are processed, they are blurred by stochastic pro-
cesses inherent in the corresponding transfer elements, i.e.,
the detection system. To get the undistorted information on
the original distribution of signals, one has to apply some
sort of resolution correction. This is a typical inverse prob-
lem @1#, i.e., inverse in causality, if one is interested in the
causes of an observed effect.

This review has been stimulated on the one hand by some
recent papers in physics@2–7# and in mathematics journals
@8,9#, on the other hand by our attempts to obtain the undis-
torted shape of the yield enhancement found in Rutherford
backscattering~RBS! spectra taken at exactly 180°@10#. We
have tested a great number of methods that can be applied to
deconvolute light ion backscattering spectra, and we will
present the results of the four most promising procedures. To
judge the quality of the deconvolution procedures, we have
to know the undistorted spectra. Therefore, all ‘‘measured’’
spectra in this contribution have been obtained by simula-
tion.

When a projectile with well defined energyE0 enters a
surface-barrier semiconductor detector~SBD! or a particle-
implanted and passivated-silicon~PIPS! detector, it loses an
energydEd by random processes in the entrance window.
This part of the initial energy does not contribute to the
detector signal. The remaining energyE02dEd will be par-
titioned in a stochastic way into electronic excitation or ion-
ization of the detector atomsdEe and into nonelectronic pro-
cessesdEne ~e.g., production of phonons!. The energydEe is
then available for the creation of electron-hole pairs. Finally,
the charge of these pairs is converted into pulse height by
standard electronics. Due to stochastic processes involved in
this energy-to-pulse-height conversion, we measure a density
distribution in pulse height.

Using many different energiesE0 and identifying the cen-
ters of gravity of the corresponding distributions with the
primary energiesE0, we obtain the energy calibration of the
detector system. Without loss of generality, we assume this

calibration to be linear, which is not strictly true, due to the
energy dependence ofdEd . With this calibration in mind, we
may consider the distribution in pulse height~for a particular
E0! a distribution in energyE. We call it the resolution func-
tion of the detector system,k(E2E0). For all methods dis-
cussed here,k(E2E0) must be known; it can be obtained,
e.g., from the spectra of projectiles backscattered from a very
thin layer. This function turns out to be approximately
Gaussian, but asymmetric.

Due to energy-loss straggling on the way into and out of
the target, projectiles scattered from thin layers at a larger
depth will show a broader distribution. It might be useful to
include this energy-loss straggling in the resolution function,
thus making the function depend explicitly on energyE0,
i.e., leading tok(E2E0 ;E0). In the following, we will re-
strict our considerations to measurements of near-surface
layers where the shape ofk can be assumed to be indepen-
dent ofE0. Nevertheless, all procedures discussed will work
equally well with an energy-dependent shape of the resolu-
tion function, provided this dependence is known.

II. FORMULATION OF THE PROBLEM

When the detector is exposed to atrue spectrum of ener-
giesE0 described by a density distributionf (E0), the ideal
measuredspectrumh(E) is given by

h~E!5E
2`

`

k~E2E0! f ~E0!dE05~k* f !~E!, ~1!

wherek* f means a convolution. Although it is not neces-
sary, we have here assumed thatk and f are independent.
The integral kernelk is the resolution function discussed
above. Normally, the spectra consist of a number of values at
discrete energiesEi , obtained by means of a multichannel
analyzer~MCA!, wherei is the channel number. So we can
replace the convolution integral by a sum. To take counting
statistics in the individual channels into account, we add
some noiser d(E

i) to the convoluted spectrum. We know that
r d(E

i) is governed by Poisson statistics dependent on the
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number of counts per channel and that it may be character-
ized by a standard deviationd. Thus we obtain theactually
measuredspectrumhd(E

i):

hd~Ei !5(
j50

jmax

k~Ei2E0
j ! f ~E0

j !1r d~Ei !

5~k* f !~Ei !1r d~Ei !. ~2!

As in Eq. ~1!, the index 0 refers to the true energy. In this
discrete formulation, the convolution reduces to the multipli-
cation of the matrixk with elementski j5k(Ei2E 0

j ), by the
vector f with components f j5 f (E 0

j ) ( i , j51,2,3,...,N),
whereN is the number of data points, e.g., the number of
channels of the MCA. The noiser d and the measured spec-
trumhd are also vectors with the same dimension asf. So we
can simply write

hd5kf1r d . ~3!

Convolution in energy domain transforms into a product in
Fourier domain; therefore, the Fourier transform of Eq.~2!
reads

F~hd!5F~k!F~ f!1F~r d!, ~4!

whereF andF21 are the operators of Fourier transform and
of inverse Fourier transform, respectively, given by

F~q!~x!5
1

A2p
E

2`

`

q~y!eixydy, ~5!

q~x!5F21@F~q!#~x!5
1

A2p
E

2`

`

F~q!~y!e2 ixydy. ~6!

Formally, one gets the true spectrumf (E0) from Eq. ~4! by

f5F21SF~hd!

F~k! D2F21SF~r d!

F~k! D . ~7!

We focus on the first term of Eq.~7!, which is available from
experiment. The asymmetric detector resolution function
k(E2E0) may be well described by a sum of two Gaussian
distributions shifted with respect to each other@11–13#. Its
Fourier transform is again a sum of two Gaussians, which
decreases at high frequenciesv proportional to
exp~2v2s2/2!, where s is the standard deviation of the
smaller of the two Gaussian peaks. In contrast, for the trans-
form of the noisy spectrumhd at high frequencies we have
to assume a fairly uniform distribution at least up to values
corresponding to the channel width of the MCA. Hence the
argument of the first term in Eq.~7! might become arbitrarily
large for high Fourier components:

F~hd!

F~k!
'evs2 ——→

v→`

`. ~8!

A forced cutoff or damping~filtering! at high frequenciesv
will result in loss of information aboutf and will destroy
structures formed by high Fourier components, e.g., edges.
We want to emphasize that Eq.~8! suggests using a mea-

sured and hence noisy resolution functionk with high Fou-
rier components rather than an analytical form with less high
frequencies.

These considerations show that the inverse of the problem
formulated by Eq.~2! is not well posed in Hadamard’s sense
@14,15#: ~i! the solution does not exist in the strict sense,~ii !
the solutions might not be unique, and~iii ! solutions might
not depend continuously on the data, i.e., small changes in
the data might cause arbitrarily large changes in the result if
the ill-posedness of the problem is not carefully taken into
account. Unfortunately, even if the problem is well posed it
still can be ill-conditioned, which will result in numerical
instabilities. This will be discussed in more detail later on.
We want to point out that our problem is much more un-
stable than, e.g., the inversion of radon transform used in
computerized tomography@16#. This is due to the very
smooth kernel in the integral equation of the first kind, Eq.
~1!. As shown by Eq.~8!, it is that feature of the kernel
which makes even small errors with high Fourier compo-
nents give rise to large oscillations in the solution of the
inverse problem@15#.

Strictly speaking, Eq.~3! is still incomplete: we should
have taken into account so-called ‘‘ghosts.’’ Ghosts are func-
tions g, which do not vanish identically but which fulfill
kg50. So, Eq.~3! can also be written as

hd5kf1r d5k~ f1g!1r d . ~3a!

These functionsg are invisible to the inversion~see, e.g.,
@16#!. As a matter of principle, they can not be reconstructed
from the data. One can only find the best approximate solu-
tion to the problem by means of ‘‘normal equations’’; see
Eq. ~13! below.
To further investigate the error resulting from deconvolution,
we use the discrete presentation, Eq.~3!. One formally getsf
by multiplying Eq.~3! by k21 from the left-hand side:

f5k21~hd2r d!. ~9!

Unfortunately, we cannot subtract the~unknown! noise r d .
The obvious consequence would be to consider the noise of
the measured spectrum to be due to a scatter of the original
spectrumfd ~which we will indicate by the indexd! and to
solve

hd5kf d ~10!

by inversion of the matrixk:

f̄d5k21hd . ~11!

Due to errors in matrix inversion, both numerical and sys-
tematic, we get a deconvoluted spectrumf̄d different from
the true spectrumf. Assuming thatiDki<ik21i21, where
kiDi is the norm ofDk @see Eq.~13!#, the total error
Df5f2f̄d can be estimated using Eq.~12! @17#:

iDfi
i fi

<
Acond~k!

12Acond~k!
iDki
iki

S iDki
iku

1
ih2hdi

ihi D . ~12!

We see thatDf depends on the relative data error
~ih2hdi/ihi!, as expected. But it also depends on the quality
of the numeric algorithm used to invertk, specified by the
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condition of k, Acond~k!, and by the relative erroriDki/iki.
iDki includes all errors due to the experimental determina-
tion of k, deviation of the calculated inverse from the true
one, etc. In Eq.~13! we give one practicable set of defini-
tions of the norm ofifi and of iki:

i fi5A(
i51

n

f i
2, iki5max

i
(
j

uki j u,

Acond~k!5ikii k̄21i ~always >1!. ~13!

The matrixk̄21 is the approximate inverse ofk obtained by
some inversion method. To stress how inaccurate a matrix
inversion may be, we mention that for a Cholesky algorithm
@17#, i.e., straightforward triangularization of the matrix, the
condition ofk can be as large as 23105. Fortunately, there
are other algorithms that provide a more stable inversion,
e.g., the Householder algorithm@18#, with Acond~k!51. But
even so,iDki/iki could still be much larger than the relative
error of the data.

We arrive at a slightly more stable problem if instead we
look for a vector f̄ d which—under certain constraints—
minimizes the norm of the differences:

ihd2kf di→min. ~14!

This will lead to the so-called normal equation:

kHkf d5kHhd . ~15!

The superscriptH marks the adjoint~or Hermitian conju-
gate!. The best approximate solution of Eq.~14! is then
given by

f̄d5~kHk!21kHhd . ~16!

Notice the difference between Eq.~11! and Eq.~16!. The
quantity ~kHk!21kH represents the so-called pseudoinverse
~Moore-Penrose inverse! @17# of k, which always exists and
which is unique. But this does not yet take into account the
ill-posedness of the problem explicitly.

So we still need a method that can treat noisy data. If the
theoretical form off is known as a function of a small num-
ber of parameters, we can fit a parameterized function tohd
using any optimization technique, such as line~descent-
direction!-searching algorithms guided, e.g., by a steepest-
descent criterion@19,20# ~Sec. III A!, least-squares fit, New-
ton techniques@19,20#, Newton techniques combined with
Tikhonov regularization @7,21#, or a maximum-entropy
method@6,22#. If one is interested in characteristics of the
spectrum characterized by high-frequency Fourier compo-
nents~e.g., sharp edges!, the representation of the theoretical
spectrum by a histogram with adjustable bin width might
give good results~Sec. III B!.

If no information about the true spectrum is available, we
have to use regularization~stabilization! techniques. Regu-
larization, e.g., Tikhonov regularization, is the approxima-
tion of an ill-posed problem by a family of neighboring well-
posed problems. This family is characterized by a
stabilization parameter that has to be chosen judiciously. Al-
ternative procedures are Landweber iterations@23,24#—

another regularization method~Sec. III C!—or using mollifi-
ers to construct an approximate inverse ofk @8,9# ~Sec.
III D !.

III. DECONVOLUTION TECHNIQUES

A. Parametrization of the spectrum

To obtain measured spectra, we take theoretical spectra,
convolute them with the resolution function and add stochas-
tic variables to represent counting statistics~see Fig. 1!. The
theoretical spectra are given as a function of energy, and they
depend on a small number of parameters.

In the deconvolution process, these parameters are deter-
mined from the measured spectra by minimizing the norm
given by Eq. ~14!. When we apply the parametrization
method, we know the exact functional dependence of our

FIG. 1. Theoretical spectrum of 400 keV helium projectiles
backscattered~a! from a one-component target,~b! from a three-
component target, and~c! from a one-component target showing the
180° yield enhancement~see text! ~thin solid line!. Also shown are
the simulated spectra that result from measurements with a detector
of 9.1 keV energy resolution~thick solid line!.
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theoretical spectra on the parameters, and this is indeed a
crucial requirement. Hence our quantitative interpretations
are correct provided we have found a function that describes
the spectrum properly.

To test the method, we consider three cases shown in
Figs. 1~a!, 1~b!, and 1~c!. Case 1 represents an RBS spectrum
that might have been obtained by backscattering 400 keV
He1 ions from a thick one-component target. The corre-
sponding trial functionf 1 depends on four parameters: the
position of the high-energy edgea1 and three parametersa2,
a3, and a4 giving the shape of the spectrum; in all these
considerations we neglect a possible high-energy back-
ground due to, e.g., pulse pileup.

f 1~E0!5H a22a3E01
a4
E0

, E0<a1

0 E0.a1

. ~17!

Case 2 corresponds to a three-component target@Fig. 1~b!#.
We assume the partial spectra to have the same functional
dependence, but with different parameters. So the theoretical
spectrumf 25 f 2,11 f 2,21 f 2,3 depends on 12 parameters:

f 2,1~E0!5a22a3E01
a4
E0

, E0<a1 ,

f 2,2~E0!5a62a7E01
a8
E0

, E0<a5 , ~18!

f 2,3~E0!5a102a11E01
a12
E0

, E0<a9 .

Case 3 represents backscattering at 180° showing a near-
surface yield enhancement@10,25#. As a trial function, we
use here a standard backscattering spectrum plus two Gaus-
sians, all cut off at the high-energy edgea1 of the spectrum
@Fig. 1~c!#. This function@Eq. ~19!# has been found to repro-
duce measured spectra fairly well. It depends on eight pa-
rameters:

f 3~E0!5a22a3E01
a4
E0

1
a5

A2pa7
expS 2

~E02a6!
2

2a7
2 D

1
ag

A2p1.3a7
expS 2

@E02~a62a7!#
2

2~1.3a7!
2 D ,
E0<a1 . ~19!

We have found@11# that asymmetric peaks such as that typi-
cal of 180° enhancement may be described by two Gaussians
with one of them smaller in height, broader by a factor of
1.3, and shifted by one standard deviation towards lower
energies. We use a similar function to describe the asymmet-
ric detector resolution~in all three cases!:

k~E2E0!5
1

11q F 1

A2ps
expS 2

~E2Ē0!
2

2s2 D
1

q

A2p1.3s
expS 2

@E2~Ē02s!#2

2~1.3s!2 D G .
~20!

Here, we have chosenq50.3 for the ratio of areas and
s53.57 keV for the standard deviation of the principal
Gaussian. This gives a full width at half maximum of 9.1
keV, in agreement with experimental data of our cooled 300
mm2 PIPS detector for 400 keV He projectiles. By introduc-
ing the energyĒ0, we take into account the difference be-
tween the mean of the principal Gaussian peak~Ē0! and the
mean of the total resolution function~E0! to avoid having the
spectrum shift through convolution:

Ē05E01
sq

11q
. ~21!

To get the deconvoluted spectrumf̄d , we optimize the pa-
rametersai with a line-searching algorithm with steepest-
descent criterion to minimize the norm of differences@Eq.
~14!#.

B. Histogram with adjustable binning

We again start with Eq.~14!. The spectrumhd(E
i) ( i

51,...,N) is displayed on a MCA with channels of constant
width D, N being typically 1024 or 2048. To prevent loss of
information,D should be small compared to the width of the
detector resolution function@Eq. ~20!#. A very simple, but
numerically expensive way would now be the variation of
the content of each channelf̄ d(E 0

j ) until ihd2kf̄ di reaches a
minimum. However, in backscattering spectra there might be
regions where the spectrum heightf (E 0

i ) stays constant
within the spread given by counting statistics; there we might
choose the widthDm of themth bin to be a multiple ofD,
thus reducing the number of bins fromN to M . By lumping
together the content of adjacent channels, some information
may be lost. But this may be outweighed by the reduction of
the relative uncertainty of the bin content and by the reduc-
tion of the numberM of contentsF̄d(E 0

m), m51,...,M ; in
most casesM can be chosen to be more than one order of
magnitude smaller thanN. As the bin width of the measured
and of the theoretical spectrum do not coincide, we have to
calculatef̄ d(E 0

j ) in Eq. ~14! by means of characteristic func-
tions Q(E02E 0

m,Dm) representing themth bin. They are
defined as

Q~E02E0
m ,Dm!5H 1, E0

m2
Dm

2
<E0<E0

m1
Dm

2
0, elsewhere.

~22!

The spectrumf̄d~E0! now follows as

f̄ d~E0!5 (
m50

M21

F̄d~E0
m!Q~E02E0

m ,Dm!, ~23!

so that we finally get the discrete spectrum

f̄ d~E0
j !5 (

m50

M21

F̄d~E0
m!Q~E0

j 2E0
m ,Dm!. ~24!
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By iteration, we optimize the following parameters by mini-
mizing the norm of the differenceihd2kf̄ di: the number of
binsM , their widthsDm, and their contentsF̄d(E 0

m). We use
the same kind of optimization algorithm as in Sec. III A to
find a set of best parameters. We start with a small number of
bins, e.g., four; then we iteratively determine those two ad-
jacent bins where a decrease in the width of one at the ex-
pense of the other will make the normihd2kf̄ di decrease
most, withD as the lower bound toDm. When this procedure
has made the norm converge to a relative minimum, we
double the number of bins and repeat the procedure. This
will, in general, give a smaller relative minimum for the
norm. We terminate the iteration when this reduction of the
norm becomes insignificant. In general, 16–32 bins lead to a
sufficiently accurate result.

C. Tikhonov regularization, Landweber iterations

We want to describe two regularization methods in a very
simplified way and to apply one of them to our problem. For
detailed information, see, e.g., Refs.@1, 14, 21, 23, 24#. We
try to damp the influence of the noiser d given by Eq.~2! by
replacing the ill-posed problem@Eq. ~14!# with a neighboring
well-posed problem depending on an adjustable parametera:

ihd2kf di1ai fdi→min. ~25!

In this way, the solution will be stabilized by somea priori
information on the result. In our case this information is that
the norm off̄d should be as small as possible; this means that
we are looking for a solution as smooth as possible. We
could also have looked for a solution that minimizes curva-
ture or, more exactly, that minimizes the norm of the second
derivative (ihd2kf di1ai fd9i→min). It can be shown@21#,
that Eq.~25! has a unique minimizerf̄ d

a :

f̄d
a5~aU1kHk!21kHhd . ~26!

Here,U is the unit matrix. Note that fora50 we get Eq.
~16!, which characterizes the best approximate solution of
our original problem. Hence, Eq.~26! is a stabilized version
of Eq. ~16!. The regularization parametera has to be chosen
according to the scatter of the data, quantified byd. If one
simply takes a power ofd for a, i.e., a}dn, one finds@14#
that the best choice would bea~d!}d2/3. However, the choice
of parametera becomes very difficult if one wants to obtain
the optimum convergence rate,a must then be determined
from the following nonlinear equation~Morozov’s principle
of discrepancy; for further discussion the reader is referred to
@26–28#!:

ikf d
a~d!2hdi5d. ~27!

This is the so-called Tikhonov regularization, the most
prominent regularization method for ill-posed problems. It
has been successfully used, e.g., for the deconvolution of
spectra in fluorescence spectroscopy@7#. But it requires an
exceedingly large numerical effort to determine the appropri-
ate regularization parametera and to invert the matrix in Eq.
~26!.

Instead of solving Eq.~26!, it appears better to solve Eq.
~15! in a stable manner by Landweber iterations. Again, we
present the result without proof; for further details see Refs.
@23, 24#. Following the Banach fixpoint theorem@29#, one
has to determinef̄d from

f̄d5~U2bkHk! f̄d1bkHhd ~28!

by successive approximations~note thatUf̄d5 f̄d):

fd
05bkHhd ,

~29!
fd
n5fd

n211b~kHhd2kHkf d
n21!.

The limits for the parameterb to make this procedure con-
verge are 0,b<2/iki2. In our casek is given by the resolu-
tion function, which is normalized to 1, so thatiki51 @see
Eq. ~13!#. Convergence is achieved when Eq.~14! is ap-
proximately fulfilled, i.e., whenihd2kf̄ d

ni<«, with « being
sufficiently small. Instead of minimizing the difference, we
make the ratio converge to 1. So we try to modify Landwe-
ber iterations described above in the following way:

f̄d
0~E0

i !5~kHhd!~E0
i !,

~30!

f̄d
n~E0

i !5 f̄d
n21~E0

i !S ~kHhd!~E0
i !

~kHkf d
n21!~E0

i !
D b

.

This modification gives a steeper edge of the spectrum and
avoids undershooting at the bottom of this edge. Contrary to
Eq. ~29!, Eq. ~30! does not tolerate local negative values of
kHkf d

n21. The convergence rate and the error in the result
depend strongly on the appropriate choice ofb and on the
breakoff criterion for the iteration. We want to emphasize
that the solutions of Eqs.~26!, ~29!, and~30! are—in a math-
ematical sense—as smooth as possible. This means that they
have to be superpositions of sinusoidal functions leading to
the well known oscillations in the result~see Sec. IV!. In the
present case, their amplitudes depend on both the regulariza-
tion parameter and the breakoff criterion. Hence, both have
to be dealt with carefully. We found that too many iterations
may give a result as poor as too few. A breakoff criterion
might be to keep the oscillations smaller than the noised of
the data.

An alternative exists if one has somea priori information
on the theoretical spectrum, e.g., that far from the edge, the
shape of the theoretical spectrum is hardly changed by con-
volution. So one can this take as the breakoff criterion, if the
norm of the difference of the calculated spectrumf̄ d

n and the
measured spectrumhd ,ihd2f̄ d

hi,is sufficiently small. This
breakoff criterion for a selected low-energy interval, together
with b50.5, has been applied in our calculations. We found
that this criterion seems to be superior to others commonly
used.

D. Mollifier method

We want to compute the inverse of the kernel in Eq.~2!
by means of mollifiers@8,9# uc(E 0

i 2E 0
j ), which may depend

on a parameter or on a set of parametersc. Mollifiers are
approximate solutions of the following equation:
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f ~E0
i !5(

j
uc~E0

i 2E0
j ! f ~E0

j !. ~31!

Obviously, uc(E 0
i 2E 0

j )5d(E 0
i 2E 0

j ) would be the exact
solution. Here, thed function is defined byd51 for i5 j and
d50 for iÞ j . The goal of this procedure is to find a so-called
reconstruction kernelvc(E 0

i 2Ej ) so that an approximate so-
lution of our problem can be determined from

f̄ d~E0
i !5(

j
vc~E0

i 2Ej !hd~Ej !. ~32!

We can here apply Eq.~10!, since these general consider-
ations are not restricted to noisy data. So we replacehd by
kf̄ d . Using the definition of the adjoint matrixkH, we can
write

(
j
vc~E0

i 2Ej !hd~Ej !

5(
j
vc~E0

i 2Ej !(
n

k~Ej2E0
n! f̄ d~E0

n!

5(
n

F(
j
vc~E0

i 2Ej !kH~Ej2E0
n!G f̄ d~E0

n!. ~33!

It follows from Eqs. ~31!–~33! that the matrix vc
[vc( i j )5vc(E 0

i 2Ej )] has to be an approximate solution of

(
j
vc~E0

i 2Ej !kH~Ej2E0
n!5uc~E0

i 2E0
n!. ~34!

The mollifier uc allows us to construct an approximate in-
versevc of k that maps the datahd to a regularized solution
f̄d @Eq. ~32!#. It should fulfill two criteria: ~i! f has to be
approximated as well as possible, and~ii ! the influence of the
noiser d has to be reduced. These two criteria contradict each
other, so one has to find a compromise between reproducing
f and smoothing the data.

Of course, the exact reconstruction kernel would be the
deconvolutedd function, i.e., a function that yields thed
function when convoluted with the detector resolution func-
tion; unfortunately, such a function does not exist. Instead of
the d function, one might use a narrow Lorentz distribution
as a mollifier:

uc~E0
i 2E0

j !}
1

11@~E0
i 2E0

j !/c#2
. ~35!

As usual in this field, the parameterc gives the width of the
mollifier. From Fourier and inverse Fourier transform, we
get from Eq.~34! the kernel by

vc5F21SF~uc!

F~k! D . ~36!

If we look at the real part of the reconstruction kernel@Eq.
~36!# we learn that a feasible ansatz might be a product of a
cosine and a Gaussian function. To obtain a more appropri-
ate result, we replace the parameterc with two adjustable
parametersa andb:

va,b~E0
i 2Ej !5cosS ~E0

i 2Ej !

a DexpS 2
~E0

i 2Ej !2

b2 D . ~37!

The parameters were determined by an optimization algo-
rithm for the special case of a rectangular function: we have
calculated the convolution of a rectangular function with our
resolution function@Eq. ~20!# and tried to reproduce the
original function by using Eq.~32!, with the kernel taken
from Eq.~37!. The best results were obtained witha50.0997
keV andb52.42 keV. By choosing parameterb, emphasis
can be put on either one of the two criteria given above.
Choosingb52.72 keV witha50.0997 keV results in a bet-
ter deconvolution of the rectangular spectrum but gives a
standard deviation five times as large. With negligible noise
r d , a much better deconvolution would be possible~a
50.0595 keV,b52.31 keV!, but thisvc completely fails for
noisy data.

Using Eq.~37!, the shape of the reconstruction kernel can
be varied only within a limited range. We found that by
modifying the kernel locally, we can reproduce the rectangu-
lar function in a better way. To do this, we start with the
optimum parametersa andb and change the reconstruction
kernel bin by bin. Our optimization process does not change
the symmetry of the function, although it would be evident in
view of the asymmetry of the resolution function; but this
does not lead to a significantly better deconvolution. The

FIG. 2. The theoretical backscattering spectrum from a one-
component target~thin solid line, symbolf ! of Fig. 1~a! is shown
together with the deconvoluted spectra~a! using parametrization
~broken line, PAR! or using histograms with adjustable binning
~thick solid line, BIN! and ~b! using Landweber iterations~broken
line, LAN! or using mollifiers~thick solid line, MOL!.
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result is a function with less regular oscillations than those
produced by Eq.~37!. We call this method ‘‘mollifier with
postoptimization.’’

IV. RESULTS

In Fig. 1 we show both the theoretical spectra and the
corresponding measured spectra obtained by convolution
with the resolution function and by adding some noise. In
mathematical language, the convolution operator maps a
theoretical spectrum from its domain of definition into its
image space or range. Instead of ‘‘domain of definition,’’ we
use here the term ‘‘object space,’’ which is more familiar to
physicists. The crucial point is that in actual practice, the
quality of deconvolution has to be assessed in image space.
So any disagreement in object space between theoretical and
deconvoluted spectra, which becomes apparent in Figs. 2, 3,
and 4, does not appear in image space. Due to the smoothing
properties of the resolution function, it is lost when both
spectra are convoluted. This fact also reflects the ill-
posedness of this inverse problem~see Sec. II!.

First we discuss the results for a simple one-component
spectrum. One usually is interested in the spectrum height
and in the position of the high-energy edge. With only the
measured spectrum at hand, as in Fig. 1~a!, one would ex-
trapolate the plateau of the spectrum towards the edge and
one would define the position of the edge where the mea-
sured spectrum has half the height of the extrapolated pla-
teau. In the case of asymmetric resolution functions, this in-
troduces a systematic shift due to the difference between the
median and the center of gravity of the resolution function.

In Fig. 2~a! we show the theoretical spectrumf together with
the results when methods using parametrization~PAR! and
variable width binning~BIN! are applied to the measured
spectrum. The results using modified Landweber iterations
~LAN ! and mollifiers with post-optimization~MOL! are
shown in Fig. 2~b!. Clearly, PAR yields the best agreement;
the original and the deconvoluted spectra are almost indistin-
guishable. For BIN, the rather coarse binning results in an
incorrect height of the edge, but the position is well repro-
duced. Using more bins would have made agreement in ob-
ject space better, but without any discernible improvement in
image space. Both LAN and MOL give spectra with steeper
edges than the measured spectrum, but with an overshoot on
top or at bottom, respectively. The essential difference is that
the intersection of the deconvoluted spectrum with half of its
extrapolated plateau should now give an unbiased estimate
of the position of the edge, irrespective of the asymmetry of
the resolution function. However, we do not believe that de-
convolution of simple backscattering spectra based upon
LAN or MOL will essentially improve evaluation.

In Fig. 3 we show the corresponding spectra from a three-
component target. We want to point out that although the
shape of the high-energy edge of the measured spectrum
@Fig. 1~b!# is completely smeared, all methods detect its
triple structure. Only PAR benefits from the information that
the spectrum is composed of three partial spectra@Eq. ~18!#.
From this point of view, the quality of the result using PAR
is rather poor. The best quantitative agreement is obtained
with BIN @Fig. 3~a!#. The oscillations in the result of LAN
@Fig. 3~b!# fit snugly into the steps of the theoretical spec-
trum, but this could also be fortuitous. MOL@Fig. 3~b!#

FIG. 3. Same as Fig. 2 but for a backscattering spectrum from a
three-component target as in Fig. 1~b!.

FIG. 4. Same as Fig. 2 but for a backscattering spectrum show-
ing the 180° yield enhancement@Fig. 1~c!#.
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yields a spectrum that does not allow any quantitative evalu-
ation.

The goal of deconvolution of 180° backscattering spectra
is to determine both height and position of maximum en-
hancement as accurately as possible. These quantities pro-
vide insight into small-angle scattering cross sections in sol-
ids. Here it is most evident that the knowledge of the exact
function used to generate the theoretical spectrum favors
PAR @Fig. 4~a!# and, in fact, the height of the maximum is
perfectly reproduced and its position is only slightly shifted
towards smaller energies. BIN@Fig. 4~a!# gives excellent
data for the height, but there is no way to determine accu-
rately the position of the maximum. Both LAN and MOL
@Fig. 4~b!# result in a maximum at too low energies. In view
of this fact, it is of no significance that LAN reproduces the
height of the peak.

From these calculations we draw the following conclu-
sions. The essential drawback of all deconvolution methods
is that the quality assessment has to be performed in image

space where the high-frequency components are damped by
convolution with the Gaussian-shaped resolution function. In
addition,~i! the morea priori information on the theoretical
spectrum is available, the better deconvolution will work;
hence, parametrization of the theoretical spectrum, if pos-
sible, is mostly superior to all other methods;~ii ! the simple
method of using histograms with variable bin width works
unexpectedly well in the case of backscattering spectra from
fairly homogeneous targets;~iii ! all other methods that need
no a priori information will work better when the spectrum
does not contain high-frequency elements such as sharp
edges.
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